

1

Machine Learning – in contrast from
traditional explicit coding, the goal of
machine learning is to use learning
algorithms over data to train a model for
specific tasks

Deep Learning – subset under Machine
Learning, like biological neurons,
artificial neurons receive inputs,
process them and pass the output to
the next layer. The complex neural
network approach results at better
feature extraction (such as edges and
textures), scalable and allows for non-
linear complex relationships.

Common deep learning architectures
and algorithms are, CNN architecture
which excels at processing grid-like data
such as images and videos or
Transformer type models which utilize
NLP and self-attention mechanism for
their operation, and Backpropagation
algorithm which helps optimize models
by reinforcing good weight & bias and
discouraging bad weight & bias.

The most basic models are built
sequentially, the model is built in layers
where each layer is responsible for
different needs. At minimum, a model
requires at least 3 Layers, the input,
output and hidden layers.

The input layer receives the raw data
(This can be image, audio, video, text
etc.) each neuron in the input layer
corresponds to a feature of the data
(Example 1, Image 28x28 = 784 pixels,
therefore 784 neurons, each neuron
receives a pixel. Example 2, Large text
file, split into vectors, each neuron
receives a vector.) it will then pass it on.

The hidden layers consist of a minimum
of 1 layer, they process the data, add a
weight and bias to them and preferably
pass the result to an activation function.
This is where patterns and complex
relationships are learned. Each hidden
layer captures different layers of
abstraction. It will then pass it on.

The output layer is responsible for
producing a result, this can be in the
form of text, audio, video or an image
(Example 1, in classification, each
neuron in the output layer can represent
a class and the output will be the
predicted class. Example 2, when
expecting a binary response its
preferable to use binary cross-entropy
for a binary result, 1 or 0).

An important aspect of deep learning is
introducing non-linear functions (or
activation functions). These functions
help the model understand more
complex variable relationships, they
allow for a more flexible and adaptive
model, they can handle complexities
much better and handle data outliers.

Linear models can only compare
variables in a straightforward way, each
variable is considered isolated unlike
nonlinear models.

2

Example for Linearly and nonlinearly
models, a cat dressed as a dog needs to
be identified, a linear model would see
the tail of a dog, and perhaps the size or
fur and base their predictions on that. A
nonlinear model would be able to see
the same number of variables, but it’ll
be able to use, compare and
understand the relationship between
them and understand it’s a cat dressed
like a dog.

Data pre-processing in model training is
the process of preparing the data for the
pipeline, resizing it, normalization
(usually between 1 and 0), ensuring
proper labeling and formatting (Such as
one-hot encoding) for the model.
Removing unnecessary data such as
dropping color channels and handling
missing / bad data.

After the pre-processing, it’s
recommended to include in the pipeline
data augmentation.

Data augmentation helps to reduce
overfitting and improves generalization
with introduction of randomness to the
data. It is done by making changes to
image such as rotation, image flipping,
changing pixels and more. These
augmentations make the model more
robust to variations in real-world data.

After pre-processing and augmentation
it’s a good practice to evaluate Batch
size and number of epochs, Batch size
refers to the number of samples (In
CNN, images) to be processed by the
model before updating the weights
(Batch size of 50 in CNN would be 50
images).

An Epoch is one full pass through the
entire training dataset (for example, 5
Epoches would mean the training data
passes through the model 5 times)
Smaller batch size (32,64) can lead to a
more stable learning but might take
longer to converge while larger batch
sizes (128,256) can make faster
progress but be more unstable.

More epochs can help the model learn
more data, but too many epochs can
lead to overfitting.

Early stopping prevents overfitting by
halting training when progress
stagnates, saving time and compute.

It is common to use optimization
algorithms when model training, some
of the more common ones are –

• SGD – Updates model weights
iteratively with randomly
selected subset of data (mini-
batches), Basic optimizer.

• Adam – Versatile, works well with
most models.

• RMSprop – effective for RNNs,
good with non-stationary
objectives.

• Adagrad – useful for sparse data
or text-based models like NLP.

• Momentum – enhances SGD by
adding momentum to help
accelerate gradients, useful for
deep networks.

• AdaDelta – works well with
models that require minimal
hyperparameter tuning.

3

One of the biggest issues for model
training is overfitting, overfitting refers to
models that preform well on training
data but very poorly on unseen new
data.

Another method to help counteract
overfitting is Regularization.

There are several common
regularization techniques that can
prevent overfitting such as –

• L1/L2 Regularization – adds
penalty to the loss function to
prevent large weights.

• Dropout – randomly disables
neurons during training forcing
the model to rely on different
subset of neurons.

• Early stopping is also considered
a method of Regularization.

One of the most important aspects of AI
model training is understanding it’s a
randomized trial and error process. This
leads us to Hyperparameter tuning, the
process of adjusting parameters that
control the behavior of the model but
aren’t directly from the training data
such as –

• Learning Rate – determines how
fast the model learns (High –
Risky & Fast, Low – Stable & Slow

• Batch size
• Number of epochs
• Dropout rate (How much of the

network is randomly “Dropped
out” during training).

Even slightly changing these numbers
can significantly alter the model’s
performance.

After playing around with
hyperparameters a good method of
understanding if our model is accurate
is via validation accuracy, this metric
tells us how accurate our model is on
new unseen before data.

In general, data is split into 2 distinct
categories, Training data and validation
data.

Validation gives us a realistic estimate
of the model’s effectiveness on real-
world data.

There are several methods of validation
such as –

• Hold-out Validation – simple split
into training and validation sets
(80-20 usually).

• Cross validation – the data is
split into multiple subsets and
the model Is trained and
validated multiple times on
different splits (Such as K-fold
cross validation).

• Stratified Validation – useful for
imbalanced datasets.

Several common metrics for
validation are –

• Accuracy – % of correct
predictions.

• Precision/Recall/F1 Score –
useful for imbalanced datasets.

• Loss – the objective function the
model is minimizing.

Another less common issue is
underfitting, this likely occurs due to
the model being too simple to find
patterns in training data.

4

When data goes into the pipeline via
the layers it is called forward pass,
the data passes through all the
layers (primarily the hidden layers)
where different features are
detected such as edges, sentiment,
patterns etc. to eventually reach the
output layer.

In each layer (Example input to
hidden, hidden to output) the model
calculates the weighted sum of the
inputs for each neuron.

Z = W1X1 + W2X2 + ... + WNXN + B

Where –

• Z = Weighted Sum
• W1, W2 ... WN are weights
• X1, X2 ... XN are features
• B = Bias

And the result is passed through an
activation function (Non-linear
function) such as ReLU or Sigmoid.

After these calculations are done
(from input layer to hidden and
hidden to output) the predicted
output is compared to the actual
output using a loss function (Such as
cross-entropy for classification or
mean squared error for regression)

The loss function output tells us how
“Wrong” the prediction was (the
difference between the expected to
the prediction).

The most important part of training a
model comes next, the
backpropagation(Backward pass) is
used to adjust weights to reduce the
loss function in the future, this is

done by calculating the gradient of
the loss function with respect to
each weight in the network.

Simply put, the backpropagation
calculates how much each neuron
contributed to the bad result.

This means if a particular weight had
a more impactful hit for the
accuracy, it can be adjusted more
heavily compared to other weights.

Once all gradients are calculated,
the weights are updated using
gradient’s descent (Or a variant such
as SGD, Adam etc.)

Wnew = Wold – N * (D / DX)

Where –

• Wold = Old weights.
• N = Learning rate
• (D / DX) = the gradient of loss

with respect to weight.

Bias is also calculated similarly.

This process repeats itself for each
training batch.

There are several issues which could
occur during Backpropagation –

• Vanishing Gradient – the gradient
is extremely small and as a result
the early layers of the network
(Closer to the input) learn very
slowly or not at all leading to
slow learning model (Much more
common with Tanh and Sigmoid).

• Exploding Gradient – the gradient
is extremely large causing
significant changes which could
lead to bad adjustments.

5

There are many activation functions,
and each has their own properties
and advantages –

• Sigmoid = outputs value between
1 to 0, good for binary
classification.

• ReLU – outputs 0 for negative
numbers and the input value for
positive inputs. It is
computationally efficient but can
get stuck on negative inputs.

• Leaky ReLU – output positive
values for positive inputs and
small negatives slopes for
negative inputs. Prevents being
stuck on negative numbers.

• Tanh – outputs values range
between -1 and 1 (Useful in
RNNs).

• Softmax – produces a probability
distribution (Output sum to 1),
useful for multi-class
classification tasks.

• Swish – a smoother, nonlinear
output often used in deep
networks and performs better
compared to ReLU.

During backpropagation like we
mentioned earlier several issues
could arise, to solve these we can
either use activation functions such
as ReLU or a method called Batch
Normalization, Batch normalization
helps stabilize the inputs before they
reach the neuron (Before weights
and bias are applied), this ensures
they remain at a stable range.

The normalization is independent and
happens at every batch of data.

Input is flowing into the neuron, weights
and bias are applied, it goes through
Batch normalization and then into a
non-linear activation function.

This ensures a normalized range of
outputs and can prevent the issues.

Teaching a model comes in various
methods, you can either teach the
model using data in a traditional way or
other methods such as Transfer
Learning.

Transfer Learning is a method in which
you can train your model using other
pre-trained models, this can be highly
effective and save time and
computational resources.

For example, if you had a model which
needed to identify Trucks on roads,
instead of teaching your model using
thousands of images you can use a pre-
trained model which already learned
large datasets for finding the best weight
and bias to fit your specific task.

• ResNet – CNN, good for image
recognition, object detection and
feature extraction.

• GPT – Transformer, effective at
Text generation, Conversational
AI, Content summarization and
creative writing.

• YOLO – CNN, ideal for real-time
computer vision applications.

• MobileNet - Lightweight ResNet /
VGG.

6

Interpretability is the concept of
understanding the behaviour of models,
or more specifically, their decision
making and predications.

 This becomes increasingly important
with larger more complex models.

At a larger scope, it also important for
trust and transparency, debugging,
regulation and accountability and bias
detection.

There are several methods to introduce
interpretability to models –

• Feature Importance – helps rank
input feature based on their
impact on the model’s output.

• LIME – for example, explaining
why a CNN classified an image
by highlighting the most
influential pixels.

• SHAP – based on co-operative
game theory, for individual
prediction explanation.

• Saliency Maps – useful for CNN,
highlighting influential regions.

The methods above and more can assist
Engineers in creating a superior more
understandable model, clearer debug
paths and help users understand the
reason for the prediction.

When training a model, it is always
important to weigh the trade-offs
between interpretability and model
complexity.

GPU Acceleration is another crucial part
of building deep learning models, this is
due to the complexity and size of large
deep learning models.

While CPUs could do the trick, GPUs are
more efficient and offer higher memory
bandwidth leading to better learning
and inference completion times.

These can be further improved through
dedicated libraries such as Tensorflow
or PyTorch which utilize specialized GPU
cores (Namely “CUDA”).

GPUs excel at parallelizing operations
like matrix multiplication and tensor
computations, which are fundamental
in deep learning tasks. This is especially
important when scaling models to
millions or billions of parameters.

For example, training a model on
ResNet-50 on a CPU could theoretically
take days, a GPU at the same class
could drop it to hours.

This can be further apparent when using
multi-GPUs or distributed GPU
architectures.

7

Data Preprocessing and Augmentation can be done via Keras’s pipeline, in the example
below we utilize the “ImageDataGenerator” function to create the preprocess pipeline.

In the example we also use folders to split images for training and validation using
flow_from_directory function in keras.

We also specify Batch Size in the ImageDataGenerator function.

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Create a separate ImageDataGenerator for training data with augmentation

train_datagen = ImageDataGenerator(

 rescale=1./255, # Rescale pixel values (normalization)

 rotation_range=40, # Rotate images randomly up to 40 degrees

 width_shift_range=0.2, # Shift the image horizontally by up to 20%

 height_shift_range=0.2, # Shift the image vertically by up to 20%

 shear_range=0.2, # Shear angle

 zoom_range=0.2, # Randomly zoom into images

 horizontal_flip=True, # Randomly flip images horizontally

 fill_mode='nearest', # Strategy to fill pixels that are lost after

shifting/rotation

 validation_split=0.2 # Reserve 20% of data for validation

)

Create a separate ImageDataGenerator for validation data without

augmentation (only rescaling)

validation_datagen = ImageDataGenerator(

 rescale=1./255, # Only rescale validation data, no augmentation

 validation_split=0.2 # Reserve 20% of data for validation

)

Load the training data with augmentation from the 'Data' folder

train_generator = train_datagen.flow_from_directory(

 'Data/', # Path to the main data folder

 target_size=(128, 128), # Resize all images to 128x128 pixels

 batch_size=32, # Number of images to process in a batch

 class_mode='binary', # Binary classification (e.g., cats/dogs)

 subset='training' # Use this for training data (80%)

)

Load the validation data without augmentation from the 'Data' folder

validation_generator = validation_datagen.flow_from_directory(

 'Data/', # Path to the main data folder

 target_size=(128, 128), # Same image size as training

 batch_size=32, # Number of images in each batch

 class_mode='binary', # Binary classification (e.g., cats/dogs)

 subset='validation' # Use this for validation data (20%)

)

8

This example code for preprocess aimed at Transformer based models

Import required libraries

import pandas as pd

from transformers import BertTokenizer

Step 1: Load Text Data from a CSV File

Assuming a CSV file with two columns: 'text' (input text) and 'label'

(target label)

data = pd.read_csv('path_to_your_csv_file.csv')

Step 2: Load the BERT Tokenizer

'bert-base-uncased' is the pre-trained model we're using

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

Step 3: Tokenization, Padding, and Truncation

Function to preprocess text data using the tokenizer

def preprocess_texts(texts, max_length=128):

 return tokenizer(

 texts.tolist(), # List of input texts

 padding=True, # Pad the sequences to the max length

 truncation=True, # Truncate sequences longer than max_length

 max_length=max_length, # Max sequence length

 return_tensors='tf' # Return TensorFlow tensors (can also be 'pt' for

PyTorch)

)

Apply the tokenizer to the 'text' column in your DataFrame

encoded_inputs = preprocess_texts(data['text'])

Step 4: Check Output (Optional)

View the tokenized input IDs and attention masks

print(encoded_inputs['input_ids']) # Numeric representation of the tokens

print(encoded_inputs['attention_mask']) # Mask for padding tokens

The processed inputs now contain:

- 'input_ids': the tokenized and padded/truncated text

- 'attention_mask': mask indicating the actual text vs. padding

9

Keras doesn’t have a functionality to handle errors, to prevent them we can use the
following code before the pipeline.

The example below shows a function that runs before the Pipeline to catch bad images
and delete them from their folder.

import os

from PIL import Image

def check_and_remove_corrupted_images(directory):

 for root, _, files in os.walk(directory):

 for file in files:

 try:

 img_path = os.path.join(root, file)

 img = Image.open(img_path)

 img.verify() # Verify if the image is intact

 except (IOError, SyntaxError) as e:

 print(f"Corrupted image found and removed: {file}")

 os.remove(img_path) # Remove the corrupted image

10

In the example below, an error catcher for CSV files aimed for Transformer based models.

import pandas as pd

Function to check and handle missing data in a CSV file

def check_and_handle_missing_data(csv_file, strategy='drop', output_file=None):

 # Step 1: Load the CSV into a DataFrame

 data = pd.read_csv(csv_file)

 # Step 2: Check for missing values

 print("Missing values before handling:")

 print(data.isnull().sum()) # Print the number of missing values for each column

 if strategy == 'drop':

 # Step 3: Drop rows with missing values

 cleaned_data = data.dropna()

 print(f"Dropped {data.shape[0] - cleaned_data.shape[0]} rows with missing

values.")

 elif strategy == 'mean':

 # Fill missing values with the mean of each column

 cleaned_data = data.fillna(data.mean())

 print("Filled missing values with the mean.")

 elif strategy == 'median':

 # Fill missing values with the median of each column

 cleaned_data = data.fillna(data.median())

 print("Filled missing values with the median.")

 elif strategy == 'mode':

 # Fill missing values with the mode of each column

 cleaned_data = data.fillna(data.mode().iloc[0])

 print("Filled missing values with the mode.")

 else:

 print("Invalid strategy. Please choose 'drop', 'mean', 'median', or 'mode'.")

 return None

 # Step 4: Optionally save the cleaned DataFrame back to a CSV file

 if output_file:

 cleaned_data.to_csv(output_file, index=False)

 print(f"Cleaned data saved to {output_file}.")

 # Return the cleaned DataFrame

 return cleaned_data

cleaned_data = check_and_handle_missing_data('path_to_your_csv_file.csv',

strategy='mean', output_file='cleaned_data.csv')

11

The next section of codes includes the Epoch size, Early stopping mechanism,
Optimization Algorithm implementation, model Architecture,

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.regularizers import l2

from keras.callbacks import EarlyStopping

Define your model architecture with regularization

model = models.Sequential([

 layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),

 # Convolutional layer

 layers.MaxPooling2D(2, 2), # Max pooling layer

 layers.Conv2D(64, (3, 3), activation='relu'),

 # Second convolutional layer

 layers.MaxPooling2D(2, 2), # Second max pooling layer

 layers.Flatten(), # Flatten the input for the dense layer

 layers.Dense(1, activation='sigmoid')

 # Output layer for binary classification

])

Compile the model

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

Set up Early Stopping

early_stopping = EarlyStopping(

 monitor='val_loss',

 patience=5,

 verbose=1,

 restore_best_weights=True

)

Fit the model with early stopping

history = model.fit(

 train_generator,

 validation_data=validation_generator,

 epochs=50,

 callbacks=[early_stopping]

)

Dense – Fully connected to every neuron of previous layer (Flatten at this code)
Conv2D – Feature extractor.
MaxPooling2D – reduces spatial dimensions (Height and Width) of the future maps.
Flatten – converts 2D feature maps from previous MaxPooling2D into 1D vector.

12

The model above can be visualized using matplotlib and networkx for better
understanding of how layers forward pass and backpropagate.

13

Hyper Parameter Tuning, in Keras, when passing hyperparameters to the function that
hosts the model creation function (subfunction “tf.keras.models.sequential” for
example), Keras automatically knows how to assign them into the model.

import tensorflow as tf

def create_model(learning_rate, dropout_rate, optimizer):

 # Build the Sequential model

 model = tf.keras.models.Sequential([

 tf.keras.layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(128, 128, 3)),

 tf.keras.layers.MaxPooling2D(2, 2),

 tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2, 2),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dropout(dropout_rate), # Hyperparameter: Dropout rate

 tf.keras.layers.Dense(1, activation='sigmoid') # Output layer

])

 # Compile the model using the passed optimizer

 model.compile(optimizer=optimizer, loss='binary_crossentropy',

metrics=['accuracy'])

 return model

Example usage:

X = tf.keras.optimizers.Adam(learning_rate=0.001) # You can set any optimizer

model = create_model(learning_rate=0.001, dropout_rate=0.4, optimizer=X)

Print the model summary

model.summary()

In the example above, the hyperparameters are the dropout rate, learning rate and
optimization algorithm, they can all be configured as variables (Algorithm for example
as X) to be changed at ease.

At the model.compile stage, it is possible to add other metrics for Evaluation, such as
Recall, Precision, Accuracy etc... as they’re already pre-defined.

model.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy', 'Precision', 'Recall'])

14

Activation Functions can be placed in every layer to add nonlinearity at the model
building function like the following example –

tf.keras.layers.Conv2D(64, (3, 3), activation='relu')

where the activation can be changed to pre-defined activation functions such as Tanh
or ReLU.

Similar to Activation functions, Batch Normalization can also be added after layers to
reduce issues we discussed earlier such as exploding gradient and vanishing gradient.

model = tf.keras.models.Sequential([

 tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(128,

128, 3)),

 tf.keras.layers.BatchNormalization(), # Add Batch Normalization here

 tf.keras.layers.MaxPooling2D(2, 2),

 tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),

 tf.keras.layers.BatchNormalization(), # Add Batch Normalization here as

well

 tf.keras.layers.MaxPooling2D(2, 2),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(256, activation='relu'),

 tf.keras.layers.BatchNormalization(), # Add Batch Normalization before

the output layer

 tf.keras.layers.Dense(1, activation='sigmoid')

])

While it’s possible to alter some Batch Normalization configurations it’s generally
accepted that the default is good enough, The default configurations do not need to be
explicitly configured as the Keras’ functionality handles it.

15

Transfer Learning allows us to also utilize pre-trained models, we can use them with
Keras to train our own models.

import tensorflow as tf

from tensorflow.keras.applications import ResNet50 # Pre-trained ResNet50

model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

Step 1: Load the pre-trained ResNet50 model without the top layers

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128,

128, 3))

Step 2: Freeze the layers of the base model

base_model.trainable = False

Step 3: Create a new model with the pre-trained base model

model = Sequential([

 base_model, # Pre-trained model as the base

 Flatten(), # Flatten the output of the base model

 Dense(128, activation='relu'), # New fully connected layer

 Dense(1, activation='sigmoid') # Output layer for binary classification

])

Unfreeze the last few layers of the base model for fine-tuning

for layer in base_model.layers[-10:]: # Unfreeze the last 10 layers

 layer.trainable = True

in the example above, we utilize ResNet50 for training our model with a pre-trained
model.

16

When talking about freezing layers, it refers to the concept of preserving the Pre-trained
model’s weights and bias, for example –

Model has 15 layers, by using a pre-trained model and freezing all my model’s layers we
basically use ResNet50 for teaching the model on our data, this can be useful at the
start due to the nature of ResNet50 and the amount of data it already learnt.

This means our model mimicks ResNet50’s Weight and Bias.

For optimization, we can unfreeze our last few layers to specifically look for patterns in
our data, these last few layers will be able to adjust their weights and bias to our
specific data.

This means our last few layers can be optimized better for the task we want to do.

GPU Acceleration can be done through Keras, in the example below it’ll be shown how
to find your GPUs.

It’s important to note that Keras requires specific needs such as WSL environment for
specific CUDNN & Cuda drivers for it to work.

import tensorflow as tf

List all the GPUs detected by TensorFlow

gpus = tf.config.list_physical_devices('GPU')

if gpus:

 print(f"GPUs available: {len(gpus)}")

 for gpu in gpus:

 print(gpu)

else:

 print("No GPUs detected")

the example above showcases how to detect GPUs in our local system while the
example below shows how we can utilize GPUs in the network.

import tensorflow as tf

strategy = tf.distribute.MultiWorkerMirroredStrategy()

with strategy.scope():

 # Define and compile your model here

 Pass

17

Another method of finding the best hyperparameters is using Keras-tuner library which
can be installed via pip, in this method we can automatically search for the best
parameters without having to manually do it.
import tensorflow as tf

from kerastuner import HyperModel, RandomSearch

from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D

from tensorflow.keras.applications import ResNet50

Define the base ResNet50 model

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

base_model.trainable = False # Freeze the layers

Define the HyperModel for tuning

class CNNHyperModel(HyperModel):

 def build(self, hp):

 model = tf.keras.models.Sequential([

 base_model, # Pre-trained ResNet50 as the base

 GlobalAveragePooling2D(), # Reduces feature maps to a vector

 # Define Dense layer hyperparameters

 Dense(hp.Int('dense_units', min_value=32, max_value=256, step=32),

activation='relu'),

 # Dropout with tunable rate

 Dropout(hp.Float('dropout_rate', min_value=0.0, max_value=0.5,

step=0.1)),

 # Output layer for binary classification

 Dense(1, activation='sigmoid’])

 # Compile the model with a tunable learning rate

 model.compile(

 optimizer=tf.keras.optimizers.Adam(

 hp.Float('learning_rate', min_value=1e-4, max_value=1e-2,

sampling='LOG')

),

 loss='binary_crossentropy',

 metrics=['accuracy'])

 return model

RandomSearch tuner setup

tuner = RandomSearch(

 CNNHyperModel(),

 objective='val_accuracy',

 max_trials=10,

 executions_per_trial=1,

 directory='hyper_tuning'

)

18

Start the hyperparameter search

tuner.search(train_generator, validation_data=validation_generator, epochs=10)

Get the best hyperparameters and model

best_hps = tuner.get_best_hyperparameters(1)[0]

best_model = tuner.get_best_models(1)[0]

Print the best hyperparameters

print(f"Best learning rate: {best_hps.get('learning_rate')}")

print(f"Best dense_units: {best_hps.get('dense_units')}")

print(f"Best dropout_rate: {best_hps.get('dropout_rate')}")

