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Machine Learning – in contrast from 
traditional explicit coding, the goal of 
machine learning is to use learning 
algorithms over data to train a model for 
specific tasks 

Deep Learning – subset under Machine 
Learning, like biological neurons, 
artificial neurons receive inputs, 
process them and pass the output to 
the next layer. The complex neural 
network approach results at better 
feature extraction (such as edges and 
textures), scalable and allows for non-
linear complex relationships. 

Common deep learning architectures 
and algorithms are, CNN architecture 
which excels at processing grid-like data 
such as images and videos or 
Transformer type models which utilize 
NLP and self-attention mechanism for 
their operation, and Backpropagation 
algorithm which helps optimize models 
by reinforcing good weight & bias and 
discouraging bad weight & bias. 

The most basic models are built 
sequentially, the model is built in layers 
where each layer is responsible for 
different needs. At minimum, a model 
requires at least 3 Layers, the input, 
output and hidden layers. 

 

 

 

 

 

 

The input layer receives the raw data 
(This can be image, audio, video, text 
etc.) each neuron in the input layer 
corresponds to a feature of the data 
(Example 1, Image 28x28 = 784 pixels, 
therefore 784 neurons, each neuron 
receives a pixel. Example 2, Large text 
file, split into vectors, each neuron 
receives a vector.) it will then pass it on. 

The hidden layers consist of a minimum 
of 1 layer, they process the data, add a 
weight and bias to them and preferably 
pass the result to an activation function. 
This is where patterns and complex 
relationships are learned. Each hidden 
layer captures different layers of 
abstraction. It will then pass it on. 

The output layer is responsible for 
producing a result, this can be in the 
form of text, audio, video or an image 
(Example 1, in classification, each 
neuron in the output layer can represent 
a class and the output will be the 
predicted class. Example 2, when 
expecting a binary response its 
preferable to use binary cross-entropy 
for a binary result, 1 or 0). 

An important aspect of deep learning is 
introducing non-linear functions (or 
activation functions). These functions 
help the model understand more 
complex variable relationships, they 
allow for a more flexible and adaptive 
model, they can handle complexities 
much better and handle data outliers. 

Linear models can only compare 
variables in a straightforward way, each 
variable is considered isolated unlike 
nonlinear models. 
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Example for Linearly and nonlinearly 
models, a cat dressed as a dog needs to 
be identified, a linear model would see 
the tail of a dog, and perhaps the size or 
fur and base their predictions on that. A 
nonlinear model would be able to see 
the same number of variables, but it’ll 
be able to use, compare and 
understand the relationship between 
them and understand it’s a cat dressed 
like a dog. 

Data pre-processing in model training is 
the process of preparing the data for the 
pipeline, resizing it, normalization 
(usually between 1 and 0), ensuring 
proper labeling and formatting (Such as 
one-hot encoding) for the model. 
Removing unnecessary data such as 
dropping color channels and handling 
missing / bad data. 

After the pre-processing, it’s 
recommended to include in the pipeline 
data augmentation. 

Data augmentation helps to reduce 
overfitting and improves generalization 
with introduction of randomness to the 
data. It is done by making changes to 
image such as rotation, image flipping, 
changing pixels and more. These 
augmentations make the model more 
robust to variations in real-world data. 

After pre-processing and augmentation 
it’s a good practice to evaluate Batch 
size and number of epochs, Batch size 
refers  to the number of samples (In 
CNN, images) to be processed by the 
model before updating the weights 
(Batch size of 50 in CNN would be 50 
images). 

An Epoch is one full pass through the 
entire training dataset (for example, 5 
Epoches would mean the training data 
passes through the model 5 times) 
Smaller batch size (32,64) can lead to a 
more stable learning but might take 
longer to converge while larger batch 
sizes (128,256) can make faster 
progress but be more unstable.  

More epochs can help the model learn 
more data, but too many epochs can 
lead to overfitting. 

Early stopping prevents overfitting by 
halting training when progress 
stagnates, saving time and compute. 

It is common to use optimization 
algorithms when model training, some 
of the more common ones are – 

• SGD – Updates model weights 
iteratively with randomly 
selected subset of data (mini-
batches), Basic optimizer. 

• Adam – Versatile, works well with 
most models.  

• RMSprop – effective for RNNs, 
good with non-stationary 
objectives. 

• Adagrad – useful for sparse data 
or text-based models like NLP. 

• Momentum – enhances SGD by 
adding momentum to help 
accelerate gradients, useful for 
deep networks.  

• AdaDelta – works well with 
models that require minimal 
hyperparameter tuning. 
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One of the biggest issues for model 
training is overfitting, overfitting refers to 
models that preform well on training 
data but very poorly on unseen new 
data.  

Another method to help counteract 
overfitting is Regularization. 

There are several common 
regularization techniques that can 
prevent overfitting such as – 

• L1/L2 Regularization – adds 
penalty to the loss function to 
prevent large weights. 

• Dropout – randomly disables 
neurons during training forcing 
the model to rely on different 
subset of neurons. 

• Early stopping is also considered 
a method of Regularization. 

One of the most important aspects of AI 
model training is understanding it’s a 
randomized trial and error process. This 
leads us to Hyperparameter tuning, the 
process of adjusting parameters that 
control the behavior of the model but 
aren’t directly from the training data 
such as – 

• Learning Rate – determines how 
fast the model learns (High –
Risky & Fast, Low – Stable & Slow 

• Batch size 
• Number of epochs 
• Dropout rate (How much of the 

network is randomly “Dropped 
out” during training). 

Even slightly changing these numbers 
can significantly alter the model’s 
performance. 

After playing around with 
hyperparameters a good method of 
understanding if our model is accurate 
is via validation accuracy, this metric 
tells us how accurate our model is on 
new unseen before data.  

In general, data is split into 2 distinct 
categories, Training data and validation 
data. 

Validation gives us a realistic estimate 
of the model’s effectiveness on real-
world data. 

There are several methods of validation 
such as – 

• Hold-out Validation – simple split 
into training and validation sets 
(80-20 usually). 

• Cross validation – the data is 
split into multiple subsets and 
the model Is trained and 
validated multiple times on 
different splits (Such as K-fold 
cross validation). 

• Stratified Validation – useful for 
imbalanced datasets. 

Several common metrics for 
validation are – 

• Accuracy – % of correct 
predictions.  

• Precision/Recall/F1 Score – 
useful for imbalanced datasets. 

• Loss – the objective function the 
model is minimizing. 

Another less common issue is 
underfitting, this likely occurs due to 
the model being too simple to find 
patterns in training data. 
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When data goes into the pipeline via 
the layers it  is called forward pass, 
the data passes through all the 
layers (primarily the hidden layers) 
where different features are 
detected such as edges, sentiment, 
patterns etc. to eventually reach the 
output layer. 

In each layer (Example input to 
hidden, hidden to output) the model 
calculates the weighted sum of the 
inputs for each neuron. 

Z = W1X1 + W2X2 + ... + WNXN + B 

Where –  

• Z = Weighted Sum 
• W1, W2 ... WN are weights 
• X1, X2 ... XN are features 
• B = Bias 

And the result is passed through an 
activation function (Non-linear 
function) such as ReLU or Sigmoid. 

After these calculations are done 
(from input layer to hidden and 
hidden to output) the predicted 
output is compared to the actual 
output using a loss function (Such as 
cross-entropy for classification or 
mean squared error for regression)  

The loss function output tells us how 
“Wrong” the prediction was (the 
difference between the expected to 
the prediction). 

The most important part of training a 
model comes next, the 
backpropagation(Backward pass) is 
used to adjust weights to reduce the 
loss function in the future, this is 

done by calculating the gradient of 
the loss function with respect to 
each weight in the network. 

Simply put, the backpropagation 
calculates how much each neuron 
contributed to the bad result. 

This means if a particular weight had 
a more impactful hit for the 
accuracy, it can be adjusted more 
heavily compared to other weights. 

Once all gradients are calculated, 
the weights are updated using 
gradient’s descent (Or a variant such 
as SGD, Adam etc.) 

Wnew = Wold – N * (D / DX) 

Where – 

• Wold = Old weights. 
• N = Learning rate 
• (D / DX) = the gradient of loss 

with respect to weight. 

Bias is also calculated similarly. 

This process repeats itself for each 
training batch. 

There are several issues which could 
occur during Backpropagation –  

• Vanishing Gradient – the gradient 
is extremely small and as a result 
the early layers of the network 
(Closer to the input) learn very 
slowly or not at all leading to 
slow learning model (Much more 
common with Tanh and Sigmoid). 

• Exploding Gradient – the gradient 
is extremely large causing 
significant changes which could 
lead to bad adjustments. 
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There are many activation functions, 
and each has their own properties 
and advantages – 

• Sigmoid = outputs value between 
1 to 0, good for binary 
classification. 

• ReLU – outputs 0 for negative 
numbers and the input value for 
positive inputs. It is 
computationally efficient but can 
get stuck on negative inputs. 

• Leaky ReLU – output positive 
values for positive inputs and 
small negatives slopes for 
negative inputs. Prevents being 
stuck on negative numbers. 

• Tanh – outputs values range 
between -1 and 1 (Useful in 
RNNs). 

• Softmax – produces a probability 
distribution (Output sum to 1), 
useful for multi-class 
classification tasks. 

• Swish – a smoother, nonlinear 
output often used in deep 
networks and performs better 
compared to ReLU. 

 

During backpropagation like we 
mentioned earlier several issues 
could arise, to solve these we can 
either use activation functions such 
as ReLU or a method called Batch 
Normalization, Batch normalization 
helps stabilize the inputs before they 
reach the neuron (Before weights 
and bias are applied), this ensures 
they remain at a stable range.  

The normalization is independent and 
happens at every batch of data. 

Input is flowing into the neuron, weights 
and bias are applied, it goes through 
Batch normalization and then into a 
non-linear activation function.  

This ensures a normalized range of 
outputs and can prevent the issues. 

Teaching a model comes in various 
methods, you can either teach the 
model using data in a traditional way or 
other methods such as Transfer 
Learning. 

Transfer Learning is a method in which 
you can train your model using other 
pre-trained models, this can be highly 
effective and save time and 
computational resources. 

For example, if you had a model which 
needed to identify Trucks on roads, 
instead of teaching your model using 
thousands of images you can use a pre-
trained model which already learned 
large datasets for finding the best weight 
and bias to fit your specific task. 

• ResNet – CNN, good for image 
recognition, object detection and 
feature extraction.  

• GPT – Transformer, effective at 
Text generation, Conversational 
AI, Content summarization and 
creative writing. 

• YOLO – CNN, ideal for real-time 
computer vision applications. 

• MobileNet  - Lightweight ResNet / 
VGG. 
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Interpretability is the concept of 
understanding the behaviour of models, 
or more specifically, their decision 
making and predications. 

 This becomes increasingly important 
with larger more complex models. 

At a larger scope, it also important for 
trust and transparency, debugging, 
regulation and accountability and bias 
detection. 

There are several methods to introduce 
interpretability to models –  

• Feature Importance – helps rank 
input feature based on their 
impact on the model’s output. 

• LIME – for example, explaining 
why a CNN classified an image 
by highlighting the most 
influential pixels. 

• SHAP – based on co-operative 
game theory, for individual 
prediction explanation. 

• Saliency Maps – useful for CNN, 
highlighting influential regions. 

The methods above and more can assist 
Engineers in creating a superior more 
understandable model, clearer debug 
paths and help users understand the 
reason for the prediction. 

When training a model, it is always 
important to weigh the trade-offs 
between interpretability and model 
complexity. 

GPU Acceleration is another crucial part 
of building deep learning models, this is 
due to the complexity and size of large 
deep learning models.  

While CPUs could do the trick, GPUs are 
more efficient and offer higher memory 
bandwidth leading to better learning 
and inference completion times. 

These can be further improved through 
dedicated libraries such as Tensorflow 
or PyTorch which utilize specialized GPU 
cores (Namely “CUDA”). 

GPUs excel at parallelizing operations 
like matrix multiplication and tensor 
computations, which are fundamental 
in deep learning tasks. This is especially 
important when scaling models to 
millions or billions of parameters. 

For example, training a model on 
ResNet-50 on a CPU could theoretically 
take days, a GPU at the same class 
could drop it to hours. 

This can be further apparent when using 
multi-GPUs or distributed GPU 
architectures. 
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Data Preprocessing and Augmentation can be done via Keras’s pipeline, in the example 
below we utilize the “ImageDataGenerator” function to create the preprocess pipeline. 

In the example we also use folders to split images for training and validation using 
flow_from_directory function in keras.  

We also specify Batch Size in the ImageDataGenerator function. 

import tensorflow as tf 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

# Create a separate ImageDataGenerator for training data with augmentation 

train_datagen = ImageDataGenerator( 

    rescale=1./255,  # Rescale pixel values (normalization) 

    rotation_range=40,  # Rotate images randomly up to 40 degrees 

    width_shift_range=0.2,  # Shift the image horizontally by up to 20% 

    height_shift_range=0.2,  # Shift the image vertically by up to 20% 

    shear_range=0.2,  # Shear angle 

    zoom_range=0.2,  # Randomly zoom into images 

    horizontal_flip=True,  # Randomly flip images horizontally 

    fill_mode='nearest',  # Strategy to fill pixels that are lost after 

shifting/rotation 

    validation_split=0.2  # Reserve 20% of data for validation 

) 

 

# Create a separate ImageDataGenerator for validation data without 

augmentation (only rescaling) 

validation_datagen = ImageDataGenerator( 

    rescale=1./255,  # Only rescale validation data, no augmentation 

    validation_split=0.2  # Reserve 20% of data for validation 

) 

 

# Load the training data with augmentation from the 'Data' folder 

train_generator = train_datagen.flow_from_directory( 

    'Data/',  # Path to the main data folder 

    target_size=(128, 128),  # Resize all images to 128x128 pixels 

    batch_size=32,  # Number of images to process in a batch 

    class_mode='binary',  # Binary classification (e.g., cats/dogs) 

    subset='training'  # Use this for training data (80%) 

) 

 

# Load the validation data without augmentation from the 'Data' folder 

validation_generator = validation_datagen.flow_from_directory( 

    'Data/',  # Path to the main data folder 

    target_size=(128, 128),  # Same image size as training 

    batch_size=32,  # Number of images in each batch 

    class_mode='binary',  # Binary classification (e.g., cats/dogs) 

    subset='validation'  # Use this for validation data (20%) 

) 
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This example code for preprocess aimed at Transformer based models 

# Import required libraries 

import pandas as pd 

from transformers import BertTokenizer 

 

# Step 1: Load Text Data from a CSV File 

# Assuming a CSV file with two columns: 'text' (input text) and 'label' 

(target label) 

data = pd.read_csv('path_to_your_csv_file.csv') 

 

# Step 2: Load the BERT Tokenizer 

# 'bert-base-uncased' is the pre-trained model we're using 

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') 

 

# Step 3: Tokenization, Padding, and Truncation 

# Function to preprocess text data using the tokenizer 

def preprocess_texts(texts, max_length=128): 

    return tokenizer( 

        texts.tolist(),  # List of input texts 

        padding=True,  # Pad the sequences to the max length 

        truncation=True,  # Truncate sequences longer than max_length 

        max_length=max_length,  # Max sequence length 

        return_tensors='tf'  # Return TensorFlow tensors (can also be 'pt' for 

PyTorch) 

    ) 

 

# Apply the tokenizer to the 'text' column in your DataFrame 

encoded_inputs = preprocess_texts(data['text']) 

 

# Step 4: Check Output (Optional) 

# View the tokenized input IDs and attention masks 

print(encoded_inputs['input_ids'])  # Numeric representation of the tokens 

print(encoded_inputs['attention_mask'])  # Mask for padding tokens 

 

# The processed inputs now contain: 

# - 'input_ids': the tokenized and padded/truncated text 

# - 'attention_mask': mask indicating the actual text vs. padding 
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Keras doesn’t have a functionality to handle errors, to prevent them we can use the 
following code before the pipeline. 

The example below shows a function that runs before the Pipeline to catch bad images 
and delete them from their folder. 

import os 

from PIL import Image 

 

def check_and_remove_corrupted_images(directory): 

    for root, _, files in os.walk(directory): 

        for file in files: 

            try: 

                img_path = os.path.join(root, file) 

                img = Image.open(img_path) 

                img.verify()  # Verify if the image is intact 

            except (IOError, SyntaxError) as e: 

                print(f"Corrupted image found and removed: {file}") 

                os.remove(img_path)  # Remove the corrupted image 
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In the example below, an error catcher for CSV files aimed for Transformer based models. 
 

import pandas as pd 

 

# Function to check and handle missing data in a CSV file 

def check_and_handle_missing_data(csv_file, strategy='drop', output_file=None): 

    # Step 1: Load the CSV into a DataFrame 

    data = pd.read_csv(csv_file) 

 

    # Step 2: Check for missing values 

    print("Missing values before handling:") 

    print(data.isnull().sum())  # Print the number of missing values for each column 

 

    if strategy == 'drop': 

        # Step 3: Drop rows with missing values 

        cleaned_data = data.dropna() 

        print(f"Dropped {data.shape[0] - cleaned_data.shape[0]} rows with missing 

values.") 

 

    elif strategy == 'mean': 

        # Fill missing values with the mean of each column 

        cleaned_data = data.fillna(data.mean()) 

        print("Filled missing values with the mean.") 

 

    elif strategy == 'median': 

        # Fill missing values with the median of each column 

        cleaned_data = data.fillna(data.median()) 

        print("Filled missing values with the median.") 

 

    elif strategy == 'mode': 

        # Fill missing values with the mode of each column 

        cleaned_data = data.fillna(data.mode().iloc[0]) 

        print("Filled missing values with the mode.") 

 

    else: 

        print("Invalid strategy. Please choose 'drop', 'mean', 'median', or 'mode'.") 

        return None 

 

    # Step 4: Optionally save the cleaned DataFrame back to a CSV file 

    if output_file: 

        cleaned_data.to_csv(output_file, index=False) 

        print(f"Cleaned data saved to {output_file}.") 

 

    # Return the cleaned DataFrame 

    return cleaned_data 

 

cleaned_data = check_and_handle_missing_data('path_to_your_csv_file.csv', 

strategy='mean', output_file='cleaned_data.csv') 
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The next section of codes includes the Epoch size, Early stopping mechanism, 
Optimization Algorithm implementation, model Architecture,  
 

import tensorflow as tf 

from tensorflow.keras import layers, models 

from tensorflow.keras.regularizers import l2 

from keras.callbacks import EarlyStopping 

 

# Define your model architecture with regularization 

model = models.Sequential([ 

    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),   

    # Convolutional layer 

    layers.MaxPooling2D(2, 2),  # Max pooling layer 

    layers.Conv2D(64, (3, 3), activation='relu'),   

    # Second convolutional layer 

    layers.MaxPooling2D(2, 2),  # Second max pooling layer 

    layers.Flatten(),  # Flatten the input for the dense layer 

    layers.Dense(1, activation='sigmoid')   

    # Output layer for binary classification 

]) 

 

# Compile the model 

model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=['accuracy']) 

 

# Set up Early Stopping 

early_stopping = EarlyStopping( 

    monitor='val_loss', 

    patience=5, 

    verbose=1, 

    restore_best_weights=True 

) 

 

# Fit the model with early stopping 

history = model.fit( 

    train_generator,  

    validation_data=validation_generator,  

    epochs=50, 

    callbacks=[early_stopping] 

) 

 

Dense – Fully connected to every neuron of previous layer (Flatten at this code) 
Conv2D – Feature extractor. 
MaxPooling2D – reduces spatial dimensions (Height and Width) of the future maps. 
Flatten – converts 2D feature maps from previous MaxPooling2D into 1D vector. 
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The model above can be visualized using matplotlib and networkx for better 
understanding of how layers forward pass and backpropagate. 
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Hyper Parameter Tuning, in Keras, when passing hyperparameters to the function that 
hosts the model creation function (subfunction “tf.keras.models.sequential” for 
example), Keras automatically knows how to assign them into the model. 

import tensorflow as tf 

 

def create_model(learning_rate, dropout_rate, optimizer): 

    # Build the Sequential model 

    model = tf.keras.models.Sequential([ 

        tf.keras.layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(128, 128, 3)), 

        tf.keras.layers.MaxPooling2D(2, 2), 

        tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), 

        tf.keras.layers.MaxPooling2D(2, 2), 

        tf.keras.layers.Flatten(), 

        tf.keras.layers.Dense(128, activation='relu'), 

        tf.keras.layers.Dropout(dropout_rate),  # Hyperparameter: Dropout rate 

        tf.keras.layers.Dense(1, activation='sigmoid')  # Output layer 

    ]) 

 

    # Compile the model using the passed optimizer 

    model.compile(optimizer=optimizer, loss='binary_crossentropy', 

metrics=['accuracy']) 

 

    return model 

 

# Example usage: 

X = tf.keras.optimizers.Adam(learning_rate=0.001)  # You can set any optimizer 

model = create_model(learning_rate=0.001, dropout_rate=0.4, optimizer=X) 

 

# Print the model summary 

model.summary() 

 

In the example above, the hyperparameters are the dropout rate, learning rate and 
optimization algorithm, they can all be configured as variables (Algorithm for example 
as X) to be changed at ease. 

At the model.compile stage, it is possible to add other metrics for Evaluation, such as 
Recall, Precision, Accuracy etc... as they’re already pre-defined. 

model.compile(optimizer='adam', 

              loss='binary_crossentropy', 

              metrics=['accuracy', 'Precision', 'Recall']) 
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Activation Functions can be placed in every layer to add nonlinearity at the model 
building function like the following example – 

tf.keras.layers.Conv2D(64, (3, 3), activation='relu') 

 

where the activation can be changed to pre-defined activation functions such as Tanh 
or ReLU. 

 

 

 

 

 

Similar to Activation functions, Batch Normalization can also be added after layers to 
reduce issues we discussed earlier such as exploding gradient and vanishing gradient. 

model = tf.keras.models.Sequential([ 

    tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(128, 

128, 3)), 

    tf.keras.layers.BatchNormalization(),  # Add Batch Normalization here 

    tf.keras.layers.MaxPooling2D(2, 2), 

     

    tf.keras.layers.Conv2D(128, (3, 3), activation='relu'), 

    tf.keras.layers.BatchNormalization(),  # Add Batch Normalization here as 

well 

    tf.keras.layers.MaxPooling2D(2, 2), 

     

    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(256, activation='relu'), 

    tf.keras.layers.BatchNormalization(),  # Add Batch Normalization before 

the output layer 

    tf.keras.layers.Dense(1, activation='sigmoid') 

]) 

 

While it’s possible to alter some Batch Normalization configurations it’s generally 
accepted that the default is good enough, The default configurations do not need to be 
explicitly configured as the Keras’ functionality handles it. 
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Transfer Learning allows us to also utilize pre-trained models, we can use them with 
Keras to train our own models. 
 
import tensorflow as tf 

from tensorflow.keras.applications import ResNet50 # Pre-trained ResNet50 

model 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten 

 

# Step 1: Load the pre-trained ResNet50 model without the top layers 

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 

128, 3)) 

 

# Step 2: Freeze the layers of the base model 

base_model.trainable = False 

 

# Step 3: Create a new model with the pre-trained base model 

model = Sequential([ 

    base_model,  # Pre-trained model as the base 

    Flatten(),  # Flatten the output of the base model 

    Dense(128, activation='relu'),  # New fully connected layer 

    Dense(1, activation='sigmoid')  # Output layer for binary classification 

]) 

 

# Unfreeze the last few layers of the base model for fine-tuning 

for layer in base_model.layers[-10:]:  # Unfreeze the last 10 layers 

    layer.trainable = True 

 

in the example above, we utilize ResNet50 for training our model with a pre-trained 
model. 
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When talking about freezing layers, it refers to the concept of preserving the Pre-trained 
model’s weights and bias, for example – 
 
Model has 15 layers, by using a pre-trained model and freezing all my model’s layers we 
basically use ResNet50 for teaching the model on our data, this can be useful at the 
start due to the nature of ResNet50 and the amount of data it already learnt. 
 
This means our model mimicks ResNet50’s Weight and Bias. 
 
For optimization, we can unfreeze our last few layers to specifically look for patterns in 
our data, these last few layers will be able to adjust their weights and bias to our 
specific data. 
 
This means our last few layers can be optimized better for the task we want to do. 
 
 
GPU Acceleration can be done through Keras, in the example below it’ll be shown how 
to find your GPUs. 
 
It’s important to note that Keras requires specific needs such as WSL environment for 
specific CUDNN & Cuda drivers for it to work. 
 
import tensorflow as tf 

 

# List all the GPUs detected by TensorFlow 

gpus = tf.config.list_physical_devices('GPU') 

if gpus: 

    print(f"GPUs available: {len(gpus)}") 

    for gpu in gpus: 

        print(gpu) 

else: 

    print("No GPUs detected") 

 

 
the example above showcases how to detect GPUs in our local system while the 
example below shows how we can utilize GPUs in the network. 
 
 
import tensorflow as tf 

 

strategy = tf.distribute.MultiWorkerMirroredStrategy() 

 

with strategy.scope(): 

    # Define and compile your model here 

    Pass 
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Another method of finding the best hyperparameters is using Keras-tuner library which 
can be installed via pip, in this method we can automatically search for the best 
parameters without having to manually do it. 
import tensorflow as tf 

from kerastuner import HyperModel, RandomSearch 

from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D 

from tensorflow.keras.applications import ResNet50 

 

# Define the base ResNet50 model 

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

base_model.trainable = False  # Freeze the layers 

 

# Define the HyperModel for tuning 

class CNNHyperModel(HyperModel): 

    def build(self, hp): 

        model = tf.keras.models.Sequential([ 

            base_model,  # Pre-trained ResNet50 as the base 

            GlobalAveragePooling2D(),  # Reduces feature maps to a vector 

 

            # Define Dense layer hyperparameters 

            Dense(hp.Int('dense_units', min_value=32, max_value=256, step=32), 

activation='relu'), 

             

            # Dropout with tunable rate 

            Dropout(hp.Float('dropout_rate', min_value=0.0, max_value=0.5, 

step=0.1)), 

             

            # Output layer for binary classification 

            Dense(1, activation='sigmoid’]) 

        # Compile the model with a tunable learning rate 

        model.compile( 

            optimizer=tf.keras.optimizers.Adam( 

                hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, 

sampling='LOG') 

            ), 

            loss='binary_crossentropy', 

            metrics=['accuracy']) 

        return model 

 

# RandomSearch tuner setup 

tuner = RandomSearch( 

    CNNHyperModel(),  

    objective='val_accuracy',  

    max_trials=10,  

    executions_per_trial=1,  

    directory='hyper_tuning' 

) 
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# Start the hyperparameter search 

tuner.search(train_generator, validation_data=validation_generator, epochs=10) 

 

# Get the best hyperparameters and model 

best_hps = tuner.get_best_hyperparameters(1)[0] 

best_model = tuner.get_best_models(1)[0] 

 

# Print the best hyperparameters 

print(f"Best learning rate: {best_hps.get('learning_rate')}") 

print(f"Best dense_units: {best_hps.get('dense_units')}") 

print(f"Best dropout_rate: {best_hps.get('dropout_rate')}") 

 

 

 

 

 

 

 


